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Abstract 44 

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill 45 

patients with the acute respiratory distress syndrome (ARDS) from COVID-19 or from other 46 

etiologies, as well as controls without ARDS. In contrast to a cytokine storm, we observed 47 

reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to 48 

other causes. COVID-19 ARDS was characterized by a dysregulated host response with 49 

increased PTEN signaling and elevated expression of genes with non-canonical roles in 50 

inflammation and immunity that were predicted to be modulated by dexamethasone and 51 

granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, 52 

COVID-19 was characterized by impaired interferon-stimulated gene expression (ISG). We found 53 

that the relationship between SARS-CoV-2 viral load and expression of ISGs was decoupled in 54 

patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, 55 

assessment of host gene expression in the lower airways of patients with COVID-19 ARDS did 56 

not demonstrate cytokine storm but instead revealed a unique and dysregulated host response 57 

predicted to be modified by dexamethasone. 58 



Introduction 60 

In its most severe form, coronavirus disease 2019 (COVID-19) can precipitate the acute 61 

respiratory distress syndrome (ARDS), which is characterized by low arterial oxygen 62 

concentrations, alveolar injury and a dysregulated inflammatory response in the lungs1. Early 63 

reports hypothesized that COVID-19 ARDS was driven by a “cytokine storm” based on the 64 

detection of higher circulating inflammatory cytokine levels in critically ill COVID-19 patients 65 

compared to those with mild disease or healthy controls2–4. Recent studies, however, have found 66 

that patients with COVID-19 ARDS in fact have lower plasma cytokine levels compared to those 67 

with ARDS due to other causes5, highlighting a need to understand the underlying mechanisms 68 

of COVID-19 ARDS. 69 

Clinical trials have demonstrated a significant mortality benefit for dexamethasone in 70 

COVID-19 patients with ARDS6, implicating a role for dysregulated inflammation in COVID-19 71 

pathophysiology given the immunomodulatory effects of corticosteroids. In contrast, clinical trials 72 

of corticosteroids for ARDS prior to the SARS-CoV-2 pandemic have had mixed results, ranging 73 

from benefit to possible harm1.  These differences suggest distinct biology in COVID-19 ARDS, 74 

with important implications for pathogenesis and treatment. 75 

While several studies have assessed host airway transcriptional responses to SARS-76 

CoV-27,8, none have compared COVID-19 ARDS to other causes of ARDS. We hypothesized 77 

that this comparison would identify distinct biological features of SARS-CoV-2 related lung injury 78 

and tested this by evaluating lower respiratory tract gene expression in critically ill adults. 79 

80 

Results 81 

We conducted a prospective case-control study of 52 adults requiring mechanical 82 

ventilation (Table 1) for ARDS from COVID-19 (COVID-ARDS, n= 15), ARDS from other 83 

etiologies (Other-ARDS, n= 32), or for airway protection in the absence of pulmonary disease 84 

(No-ARDS, n = 5). Other ARDS etiologies included pneumonia, aspiration, sepsis, and 85 

transfusion reaction. Patients were enrolled at two tertiary care hospitals in San Francisco, 86 



California under research protocols approved by the University of California San Francisco 87 

Institutional Review Board (Methods). We excluded immunosuppressed patients to avoid 88 

confounding the measurement of host inflammatory responses (Methods). Tracheal aspirate 89 

(TA) was collected within five days of intubation and underwent RNA sequencing (Methods). 90 

 We compared TA gene expression between COVID-ARDS and Other-ARDS patients 91 

(Methods, Fig. 1a, Supplementary Data 2) and identified 696 differentially expressed genes at 92 

an adjusted P-value < 0.1, as well as differentially activated pathways using Ingenuity Pathway 93 

Analysis (IPA)9. Notably, we did not observe elevated expression of genes encoding canonical 94 

proinflammatory cytokines, such as IL-1 or IL-6, in COVID-ARDS compared to Other-ARDS. In 95 

fact, IL-1, IL-6 and several other cytokine signaling pathways were more highly activated in 96 

Other-ARDS, whereas COVID-ARDS patients had comparable inflammatory pathway activation 97 

to No-ARDS controls (Fig. 1b, Supplementary Data 3). We also found attenuation of the 98 

proinflammatory HIF-1a and nitric oxide signaling pathways in COVID-ARDS compared to Other-99 

ARDS patients.  To relate these lower respiratory tract findings to systemic inflammatory 100 

responses, we also assessed circulating plasma cytokines. We found no difference in IL-6 or IL-101 

8 levels, and lower concentrations of sTNFR1, in COVID-ARDS versus Other-ARDS patients 102 

(Fig. 1c, Supplementary Data 4). 103 

Evaluation of genes with the most significant expression differences in COVID-ARDS 104 

compared to Other-ARDS did, however, reveal several differences in genes regulating immunity 105 

and inflammation (Supplementary Data 2). For instance, among genes upregulated in COVID-106 

ARDS, P2RY14 functions in purinergic receptor signaling to mediate inflammatory responses 107 

and its ligand UDP-glucose promotes neutrophil recruitment in the lung10. Conversely, ARG1, 108 

which promotes macrophage efferocytosis and inflammation resolution11, was downregulated in 109 

COVID-ARDS versus Other-ARDS patients. 110 

At the pathway level, we observed activation of PTEN signaling in COVID-ARDS 111 

compared to both Other-ARDS and No-ARDS patients (Fig. 1b, Supplementary Data 3). PTEN 112 

modulates both innate and adaptive immune responses by opposing the activity of PI3K12. 113 



Consistent with our observations, PTEN attenuates expression of certain cytokines while 114 

amplifying other innate immune responses in a manner that may promote injurious inflammation 115 

during respiratory infections13, suggesting a potentially pathologic role in COVID-ARDS. In silico 116 

prediction of cell type composition (Methods, Supplementary Fig. 1, Supplementary Data 5) 117 

did not identify differences in lymphocyte, macrophage or neutrophil populations but did identify 118 

markedly decreased proportions of type-2 alveolar epithelial cells and increased proportions of 119 

goblet and ciliated cells in COVID-ARDS compared to Other-ARDS. This may reflect alveolar 120 

epithelial injury, airway remodeling, and/or preferential SARS-CoV-2 infection of cells with the 121 

highest expression of ACE2 and TMPRSS214. 122 

To test the hypothesis that existing pharmaceuticals might counter the dysregulated 123 

transcriptional signature of COVID-19 related ARDS, we compared differentially expressed 124 

genes against the IPA database of 12,981 drug treatment-induced transcriptional signatures 125 

derived from human studies and cell culture experiments9 (Methods, Fig. 1c, Supplementary 126 

Data 6). Dexamethasone was the compound predicted to most significantly counter-regulate the 127 

genes expressed in COVID-ARDS patients compared to No-ARDS patients, and was also 128 

significant with respect to the Other-ARDS group. This finding was striking given that 129 

dexamethasone is the only drug thus far proven to confer a mortality benefit in patients with 130 

severe COVID-196. Granulocyte colony stimulating factor (G-CSF) was also significant, which is 131 

intriguing given that a recent clinical trial found a mortality benefit in COVID-19 patients treated 132 

with this agent15. Other corticosteroids (fluticasone, prednisolone) as well as omega-3 fatty acids 133 

(eicosapentenoic and docosahexaenoic acids) were also predicted to counteract the 134 

transcriptional profile of COVID-ARDS with respect to comparator groups and thus may 135 

represent possible therapeutic agents (Fig. 1c, Supplementary Data 6). 136 

As our analysis did not reveal evidence of a cytokine storm in COVID-19 ARDS, we 137 

hypothesized that other steroid-responsive pathways may be responsible for the therapeutic 138 

benefit of dexamethasone. Although commonly thought of as indiscriminate immunosuppressive 139 

medications, glucocorticoids affect diverse biological processes. We therefore proceeded to 140 



examine the genes comprising the transcriptional signature of COVID-ARDS that were also 141 

predicted to be regulated by dexamethasone (Supplementary Data 7). Interestingly, both 142 

dexamethasone and G-CSF were predicted to attenuate the expression of several genes highly 143 

upregulated in COVID-ARDS versus controls (e.g., P2YR14) as well as other genes with well-144 

established roles in immunity, inflammation, and interferon responses. For instance, we found 145 

that COVID-ARDS patients had increased expression of the interferon-inducible and 146 

dexamethasone-regulated gene EPSTI1, which promotes M1 macrophage polarization16, and 147 

STAT1, which induces chemokine expression, regulates differentiation of hematopoietic cells, 148 

and promotes reactive oxygen species production17. 149 

ARDS is a heterogeneous syndrome caused by diverse infectious and non-infectious 150 

insults1. To more precisely understand host response relationships between subtypes of ARDS, 151 

we performed secondary analyses comparing the transcriptional signature of COVID-ARDS 152 

without co-infections (n = 8) to that of ARDS caused exclusively by other viral (n = 4, Fig. 2a, 153 

Supplementary Data 1) or bacterial (n = 9, Fig. 2b) lower respiratory tract infections (LRTI) 154 

(Supplementary Data 8). COVID-ARDS was characterized by lower expression of 155 

proinflammatory signaling pathways compared to bacterial LRTI-associated ARDS (Fig. 2c, 156 

Supplementary Data 9), but higher levels of the same pathways compared to viral LRTI-157 

associated ARDS. 158 

Although interferon-related gene expression was higher in COVID-ARDS compared to 159 

bacterial LRTIs and no-ARDS controls, it was markedly attenuated in ARDS patients with 160 

COVID-19 versus those with other viral LRTI (Fig. 2d, Supplementary Data 10, Methods). Prior 161 

studies found strong correlation between SARS-CoV-2 viral load and expression of interferon-162 

stimulated genes (ISGs) in the upper respiratory tract of patients with mild disease, early during 163 

infection18. In contrast, in the lower respiratory tract of patients with severe disease, we 164 

observed decoupling of this relationship for several ISGs (Figs. 2e-f, Supplementary Data 11), 165 

suggesting that a dysregulated interferon response in the lower respiratory tract may 166 

characterize severe COVID-19. This hypothesis is supported by recent findings of impaired 167 



interferon signaling in peripheral blood immune cells of patients with severe versus mild COVID-168 

1919, and a recent report suggesting that a dysregulated interferon response may be a universal 169 

characteristic of severe viral infections20. 170 

171 

Discussion 172 

Our results challenge the cytokine storm model of COVID-19 ARDS. Instead, we observe 173 

a complex picture of host immune dysregulation that includes upregulation of genes with non-174 

canonical roles in inflammation, immunity and interferon signaling that are predicted to be 175 

attenuated by dexamethasone, G-CSF and other potential therapeutics. Our work emphasizes 176 

the value of including clinically relevant control patients in COVID-19 immunophenotyping studies 177 

and underscores that detection of elevated cytokine levels in the blood does not necessarily 178 

equate to causality in pathogenesis. Single cytokine blockade was attempted unsuccessfully in 179 

the past for treatment of sepsis21, which like COVID-19, is characterized by dysregulated host 180 

response to infection as well as significant biologically meaningful heterogeneity22. 181 

This work also builds on recent reports of dysregulated interferon responses in patients 182 

with severe COVID-19 pneumonia and suggests that decoupling of viral load from interferon 183 

signaling may be a relevant pathologic feature of severe disease. Further work in a larger cohort 184 

that also includes direct measurement of cytokine levels in the lower airway will be needed to 185 

validate these results. In conclusion, comparative lower respiratory transcriptional profiling of 186 

patients with ARDS did not find evidence of a COVID-19 related cytokine storm but did reveal a 187 

unique dysregulated host response predicted to be moderated by dexamethasone and other 188 

potential therapeutics. 189 



Materials and Methods 190 

191 

Study design, clinical cohort and ethics statement 192 

We conducted a case-control study of patients with ARDS due to COVID-19 (n = 15) 193 

versus two control groups of either patients with ARDS due to other causes (n = 32) or patients 194 

intubated for airway protection without evidence of pulmonary pathology on imaging (n = 5). We 195 

studied patients who were enrolled in either of two prospective cohort studies of critically ill 196 

patients at the University of California, San Francisco (UCSF) and Zuckerberg San Francisco 197 

General Hospital. Both studies were approved by the UCSF Institutional Review Board 198 

according under protocols 17-24056 and 20-30497, respectively, which granted a waiver of 199 

initial consent for tracheal aspirate and blood sampling. Informed consent was subsequently 200 

obtained from patients or their surrogates for continued study participation, as previously 201 

described23. 202 

For this analysis, inclusion criteria were: 1) admission to the intensive care unit for 203 

mechanical ventilation for ARDS or airway protection, 2) age ≥ 18 years, 3) availability of TA 204 

with 106 protein-coding reads collected within five days of intubation. Exclusion criteria were: 1) 205 

receipt of immunosuppressive medication or underlying immunocompromising condition prior to 206 

tracheal aspirate collection. Subject charts and chest x-rays were reviewed by at least two study 207 

authors (AS, PS, ES, FM, CD, MM, CL, CC) to confirm a diagnosis of ARDS using the Berlin 208 

Definition24. Lower respiratory tract infections were adjudicated by two study physicians using 209 

the United States Centers for Disease Control surveillance definition of pneumonia25. Of 72 210 

patients initially screened, nine with ARDS due to COVID-19 and 10 with ARDS due to other 211 

causes were excluded because of treatment with immunosuppressant medications or because 212 

of an underlying immunocompromising condition (e.g., solid organ transplantation, bone marrow 213 

transplantation, human immunodeficiency virus infection). 214 

215 



Metagenomic sequencing 216 

Following enrollment, TA was collected and mixed 1:1 with DNA/RNA shield (Zymo 217 

Research) to preserve nucleic acid. To evaluate host gene expression and detect the presence 218 

of SARS-CoV-2 and other viruses, metagenomic next generation sequencing (mNGS) of RNA 219 

was performed on TA specimens. Following RNA extraction (Zymo Pathogen Magbead Kit) and 220 

DNase treatment, human cytosolic and mitochondrial ribosomal RNA was depleted using 221 

FastSelect (Qiagen). To control for background contamination, we included negative controls 222 

(water and HeLa cell RNA) as well as positive controls (spike-in RNA standards from the 223 

External RNA Controls Consortium (ERCC))26. RNA was then fragmented and underwent library 224 

preparation using the NEBNext Ultra II RNAseq Kit (New England Biolabs). Libraries underwent 225 

146 nucleotide paired-end Illumina sequencing on an Illumina Novaseq 6000 instrument. 226 

227 

Host differential expression and pathway analysis 228 

Following demultiplexing, sequencing reads were pseudo-aligned with kallisto27 (v. 229 

0.46.1; including bias correction) to an index consisting of all transcripts associated with human 230 

protein coding genes (ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA sequences, 231 

and the sequences of ERCC RNA standards. Samples retained in the dataset had a total of at 232 

least 1,000,000 estimated counts associated with transcripts of protein coding genes, and the 233 

median across all samples was 7.3 million. Gene-level counts were generated from the 234 

transcript-level abundance estimates using the R package tximport28, with the scaledTPM 235 

method. 236 

Differential expression analysis was performed using DESeq229. We modeled the 237 

expression of individual genes using the design formula ~ARDSEtiology. In our primary 238 

analysis, the ARDS etiology was categorized as COVID-ARDS, Other-ARDS, or No-ARDS. In 239 

our secondary analysis, the ARDS etiology was categorized as COVID-ARDS, Viral-ARDS, 240 

Bacterial-ARDS, or No-ARDS. COVID-ARDS patients with viral or bacterial co-infections were 241 



excluded from this secondary analysis. Significant genes were identified using an independent-242 

hypothesis-weighted, Benjamini-Hochberg false discovery rate (FDR) less than 0.130,31. 243 

Empirical Bayesian adaptive shrinkage estimators for log2-fold change were fit using ashr32. We 244 

generated heatmaps of the top 50 differentially expressed genes by absolute log2-fold change. 245 

For visualization, gene expression was normalized using the variance stabilizing transformation, 246 

centered, and z-scaled. Heatmaps were generated using the pheatmap package. Patients were 247 

clustered using Euclidean distance and genes were clustered using Manhattan distance. 248 

Differentially expressed genes (FDR < 0.1) were analyzed using Ingenuity Pathway Analysis 249 

(IPA, Qiagen)9,33.  250 

 251 

Canonical pathway analysis and drug/cytokine upstream regulator analysis 252 

 To evaluate signaling pathways and upstream transcriptional regulators from gene 253 

expression data, we employed IPA. Specifically, genes were analyzed using Core, Canonical 254 

Pathway and Upstream Regulator Analysis on shrunken log2-fold change. IPA Upstream 255 

Regulator Analysis was employed to identify potential drug and cytokine regulators and predict 256 

their activation states based on expected effects between regulators and their known target 257 

genes or proteins annotated in the Ingenuity Knowledge Base (IKB)33. IPA calculates a Fisher’s 258 

exact p-value for overlap of differentially expressed genes with curated gene sets representing 259 

canonical biological pathways, or upstream regulators of gene expression, including cytokines 260 

and 12,981 drugs. In addition, IPA calculates a Z-score for the direction of gene expression for a 261 

pathway or regulator based on the observed gene expression in the dataset. The Z-score 262 

signifies whether expression changes for genes within pathways, or for known target genes of 263 

upstream regulators, are consistent with what is expected based on previously published 264 

analyses annotated in the IKB. Significant pathways and upstream regulators were defined as 265 

those with a Z-score absolute value greater than 2 and an overlap P value < 0.05. 266 

 267 



In silico analysis of cell type proportions 268 

 Cell-type proportions were estimated from bulk host transcriptome data using the 269 

CIBERSORT X algorithm34. We used the Human Lung Cell Atlas dataset35 to derive the single 270 

cell signatures. The cell types estimated with this reference cover all expected cell types in the 271 

airway. The estimated proportions were compared between the three patient groups using a 272 

Mann-Whitney-Wilcoxon test (two-sided) with Bonferroni correction. 273 

 274 

Quantification of SARS-CoV-2 viral load by mNGS 275 

All samples were processed through a SARS-CoV-2 reference-based assembly pipeline 276 

that involved removing reads likely originating from the human genome or from other viral 277 

genomes annotated in RefSeq with Kraken2 (v. 2.0.8_beta), and then aligning the remaining 278 

reads to the SARS-CoV-2 reference genome MN908947.3 using minimap2 (v. 2.17). We 279 

calculated SARS-CoV-2 reads-per-million (rpM) by dividing the number of reads that aligned to 280 

the virus with mapq ≥ 20 by the total number of reads in the sample (excluding reads mapping to 281 

ERCC RNA standards).  282 

 283 

Regression of ISG counts against viral load in TA and NP samples 284 

We assembled a set of 100 interferon-stimulated genes based on the “Hallmark 285 

interferon alpha response” gene set in MSigDB36. We then performed robust regression of the 286 

quantile normalized gene counts (log2 scale), generated using the R package limma, against 287 

log10(rpM) of SARS-CoV-2. This was done in two separate datasets of COVID-19 patients: i) the 288 

tracheal aspirate (TA) samples from patients with COVID-19 ARDS reported in this study 289 

(n=15); and ii) the nasopharyngeal swab (NP) samples from patients with mostly early and mild 290 

disease that we previously reported (n=93)18. The analysis was performed using the R package 291 

robustbase (v. 0.93.6), which implements MM-type estimators for linear regression. Model 292 

predictions were generated using the R package ggeffects (v. 0.14.3) and used for display in the 293 



individual gene plots. Error bands represent normal distribution 95% confidence intervals 294 

around each prediction. Reported P-values for significance of the difference of the regression 295 

coefficient from 0 are based on a t-statistic and Benjamini-Hochberg adjusted. Reported R2 296 

values represent the adjusted robust coefficient of determination. 297 

298 

Data and Code Availability 299 

Human gene counts for the samples generated in this study can be obtained under 300 

NCBI GEO accession GSE163426. The published human lung single-cell datasets37 used for 301 

cell type proportions analysis can be obtained through Synapse under accessions syn21560510 302 

and syn21560511. Code for the differential expression and cell type proportions analysis is 303 

available at: https://github.com/AartikSarma/COVIDARDS. 304 
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Table 1. Clinical and demographic characteristics of patients with ARDS due to COVID-19 325 

(COVID-ARDS), control patients with ARDS due to other etiologies (Other-ARDS), and intubated 326 

control patients without ARDS (No-ARDS). 327 

COVID-
ARDS 

Other-
ARDS P 

No- 
ARDS P 

N 15 32 5 

Age  (median [IQR]) 54.8 
[42.5, 67.5] 

61.4 
[47.3, 71.5] 0.205 66.2 

[62.0, 82.0] 0.190 

Male 9 (60.0) 20 (62.5) 1.000 2 (40.0) 0.795 
30-day mortality 3 (20.0) 11 (34.4) 0.508 2 (40.0) 0.546 
Race (%) <0.001 0.029 
African American 0 (0.0) 2 (6.2) 0 (0.0) 
Asian 3 (20.0) 4 (12.5) 1 (20.0) 
Caucasian 1 (6.7) 23 (71.9) 3 (60.0) 
Other 11 (73.3) 3 (9.4) 1 (20.0) 
Hispanic ethnicity 8 (53.3) 3 (9.4) 0.003 0 (0.0) 0.114 

PaO2/FiO2 (median [IQR])* 74.0 
[60.5, 115.0] 

96.0 
[67.0, 148.0] 0.114 296.0  

[216.0, 366.5] 0.003 

ARDS etiology (%) 0.109 <0.001 
Aspiration 0 (0.0) 5 (15.6) 0 (0.0) 
LRTI 15 (100.0) 20 (62.5) 0 (0.0) 
Sepsis 0 (0.0) 4 (12.5) 0 (0.0) 
Transfusion 0 (0.0) 2 (6.2) 0 (0.0) 
Unknown 0 (0.0) 1 (3.1) 0 (0.0) 
None 0 (0.0) 0 (0.0) 5 (100.0) 
LRTI type (%) <0.001 <0.001 
Bacterial 0 (0.0) 9 (28.1) 0 (0.0) 
Viral 8 (60.0) 4 (12.5) 0 (0.0) 
Viral + Bacterial 4 (20.0) 3 (9.4) 0 (0.0) 
Viral + Viral 3 (20.0) 0 (0.0) 0 (0.0) 
Unknown 0 (0.0) 4 (12.5) 0 (0.0) 
None 0 (0.0) 12 (37.5) 5 (100.0) 
P-values represent comparisons versus COVID-ARDS. Reasons for intubation of No-ARDS
patients included: hemorrhagic stroke, subdural hematoma, retroperitoneal hemorrhage or other
neurosurgical procedure. Statistical significance was determined using Fisher’s exact test (discrete
variables) or by Wilcoxon test (continuous variables). *Lowest PaO2/FiO2 recorded in first five days
of mechanical ventilation. PF ratios were not available for two Other-ARDS subjects, who were
diagnosed with ARDS based on an SaO2/FiO2 < 315. IQR = Interquartile Range.

328 

329 



330 
331 

Figure 1. Lower respiratory tract transcriptional signature of COVID-19 ARDS. a) Heatmap of the 332 
top 50 differentially expressed genes by adjusted p value between patients with COVID-19 333 
related ARDS (COVID-ARDS, red) versus controls with ARDS due to other etiologies (Other-334 
ARDS, violet). Intubated controls with no ARDS were also included in the unsupervised 335 
clustering (No-ARDS, grey). b) Ingenuity Pathway Analysis (IPA) based on differential gene 336 
expression analyses demonstrating expression of signaling pathways by IPA activation Z-score 337 
with respect to a baseline of COVID-ARDS. Values are tabulated in (Supplementary Data 3). c) 338 
Differences in plasma inflammatory cytokine concentrations between patients with ARDS due to 339 
COVID-19 (COVID-ARDS, red) or other etiologies (Other-ARDS, violet). Lines indicate medians. 340 
P values calculated based on Mann-Whitney test. Values tabulated in (Supplementary Data 4). 341 
d) Pharmacologic agents predicted to mitigate the dysregulated host response of COVID-19342 
ARDS with respect to Other-ARDS (violet) or No-ARDS patients (grey) identified by 343 
computational matching against the IPA database of drug transcriptional signatures. Values 344 
tabulated in (Supplementary Data 5). Pathways with a Z-score absolute value > 2 and overlap P 345 
value < 0.05 are significant.346 
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347 
348 

Figure 2. Lower respiratory tract transcriptional signature of ARDS due to COVID-19 versus 349 
other viral or bacterial lower respiratory tract infections.  a) Heatmap depicting expression and 350 
unsupervised clustering of top differentially expressed genes by adjusted P value between 351 
patients with COVID-19 related ARDS (COVID-ARDS, red) versus ARDS due to viral LRTI (Viral-352 
ARDS, blue).  b) Heatmap depicting expression and unsupervised clustering of the top 50 353 
differentially expressed genes between patients with COVID-19 related ARDS (COVID-ARDS, 354 
red) versus ARDS due to bacterial LRTI (Bacterial-ARDS, green).  c) Pathway analysis based on 355 
differentially expressed genes depicting relative expression of signaling pathways by IPA Z-score 356 
with respect to a baseline of gene expression in COVID-ARDS. Values are tabulated in 357 
(Supplementary Data 8). d) Predicted activation of upstream interferons in patients with ARDS 358 
due to viral or bacterial LRTI compared to those with COVID-ARDS revealed downregulation of 359 
type-I/III interferons in COVID-ARDS versus other viral LRTI-related ARDS. Values tabulated in 360 
(Supplementary Data 9). e) Scatterplot of the relationship between interferon-stimulated gene 361 
(ISG) counts and SARS-CoV-2 viral load (reads per million, rpM), quantified by the regression 362 
slope, in nasopharyngeal (NP) samples from patients with mostly mild/early COVID-19 (x-axis) 363 
and in tracheal aspirate (TA) samples from patients with severe COVID-19 and ARDS (y-axis). 364 
f) RSAD2 is an ISG whose expression (y-axis) is correlated with SARS-CoV-2 viral load (x-axis)365 
in both early/mild (NP) and severe (TA) disease, while OASL is an ISG for which the correlation 366 
observed in early/mild COVID-19 is absent in severe COVID-19 patients with ARDS. Values are 367 
tabulated in (Supplementary Data 10). 368 
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Supplementary Materials 457 

 458 

Supplementary Data 1. Detailed clinical, microbiological and demographic features of the 459 

cohort. Legend: *SaO2/FiO2 Ratio (SF Ratio) < 315 was used to verify ARDS diagnosis in these 460 

subjects. 461 

 462 

Supplementary Data 2. Differentially expressed genes (adjusted P value (padj) < 0.1) between 463 

patients with ARDS due to COVID-19 (COVID-ARDS) versus a) controls with ARDS due to 464 

other etiologies (Other-ARDS) or b) intubated controls without ARDS (No-ARDS). Positive fold 465 

change indicates gene is upregulated in COVID-ARDS. 466 

 467 

Supplementary Data 3. Ingenuity Pathway Analysis (IPA) of differentially expressed genes 468 

(padj < 0.1) between patients with ARDS due to COVID-19 (COVID-ARDS) versus a) controls 469 

with ARDS due to other etiologies (Other-ARDS) or b) intubated controls without ARDS (No-470 

ARDS). Positive Z-score indicates pathway is upregulated in COVID-ARDS. Pathways with a Z-471 

score absolute value ≥ 1 are included in table.  472 

 473 

Supplementary Data 4. Plasma concentrations of inflammatory cytokines in patients with 474 

ARDS due to COVID-19 (COVID-ARDS) versus controls with ARDS due to other etiologies 475 

(Other-ARDS).  476 

 477 

Supplementary Data 5. In silico deconvolution of cell type proportions from tracheal aspirate 478 

bulk RNA-sequencing data using lung single cell signatures. Data are plotted in (Supplementary 479 

Figure 1). 480 

 481 



Supplementary Data 6. Chemical and biological drugs computationally predicted by IPA to 482 

attenuate the transcriptional response of ARDS due to COVID-19 (COVID-ARDS) against a 483 

comparator group of a) ARDS due to other causes (Other-ARDS) or b) intubated controls 484 

without ARDS (No-ARDS). Drugs with a Z-score > 2 are included in table. 485 

 486 

Supplementary Data 7. Genes affected by drugs computationally predicted by IPA to modulate 487 

the transcriptional response of ARDS due to COVID-19 (COVID-ARDS) against a comparator 488 

group of a) ARDS due to other causes (Other-ARDS) or b) intubated controls without ARDS 489 

(No-ARDS). Predicted transcriptional effect of each drug on each gene is indicated with respect 490 

to comparator group 1 in the table. 491 

 492 

Supplementary Data 8. Differentially expressed genes (padj < 0.1) between patients with 493 

ARDS due to COVID-19 (COVID-ARDS) versus controls with ARDS due to a) other viral lower 494 

respiratory tract infections (Other Viral-ARDS) or b) bacterial lower respiratory tract infections 495 

(Bacterial-ARDS). Positive log2 fold change indicates gene is upregulated in COVID-ARDS. 496 

 497 

Supplementary Data 9. Pathway analysis (IPA) of differentially expressed genes (padj < 0.1) 498 

between patients with ARDS due to COVID-19 (COVID-ARDS) versus controls with ARDS due 499 

to other viral or bacterial lower respiratory tract infections. Z-scores are with respect to COVID-500 

ARDS.  Pathways with a Z-score absolute value ≥ 1 are included in table. 501 

 502 

Supplementary Data 10. Computationally predicted (IPA) upstream cytokines based on the 503 

transcriptional signature of COVID-19 ARDS (COVID-ARDS) compared to ARDS from other 504 

viral LRTI. Pathways with a Z-score absolute value ≥ 1 are included in table. 505 

506 



Supplementary Data 11. Relationship between interferon-stimulated gene (ISG) expression 507 

and SARS-CoV-2 viral load measured in RNA-seq reads per million (rpM) for COVID-19 508 

patients with late, severe disease and ARDS (COVID-ARDS) from lower respiratory tract 509 

samples (this study), and COVID-19 patients with early, mostly mild disease measured from 510 

upper respiratory tract samples18. Legend: reg_intercept = intercept in the robust regression of 511 

gene expression on SARS-CoV-2 viral load; reg_slope = slope in the robust regression of gene 512 

expression on SARS-CoV-2 viral load; reg_adj_R2 = adjusted robust coefficient of 513 

determination; reg_p_adj = Benjamini-Hochberg adjusted p-value for difference of the 514 

regression slope from 0. 515 

 516 

Supplementary Appendix. COMET Consortium member list. 517 

 518 

Supplementary Figure 1. In silico deconvolution of cell types from tracheal aspirate bulk RNA-519 

sequencing data using lung single cell signatures. The horizontal line inside the box denotes the 520 

median and the lower and upper hinges correspond to the first and third quartiles, respectively. 521 

Whiskers extend from the hinge to the largest (smallest, respectively) value no more than 522 

1.5*IQR away from the hinge, where IQR is the interquartile range. The y-axis in each panel 523 

was trimmed at the maximum value among the three patient groups of 1.5*IQR above the third 524 

quartile. Pairwise comparisons between patient groups were performed with a two-sided Mann-525 

Whitney-Wilcoxon test followed by Bonferroni’s correction (n=15 COVID-ARDS, n=32 Other 526 

ARDS, n=5 No-ARDS). Data are tabulated in (Supplementary Data 5). 527 
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